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ABSTRACT 

Using the methods of the renormalization group we study the 

structure of Pomeranehukon Green’s functions in a Reggeon calculus 

or Reggeon field theory model. We are able to determine the behavior 

of all Green’s functions in the “infrared” limit of small Reggeon momenta 

and small Reggeon energy (-E = angular momentum minus one). This 

behavior is governed by a zero of the classic Gell-Mann-Low variety 

which arises when the triple Pomeranchukon coupling is pure imaginary 

as suggested by Gribov’s analysis of Feynman graphs in ordinary field 

theory. The form of the Pomeranchukon propagator dictates that the 

trajectory function be singular at t=O and that a variety of scaling laws 

for the Green’s functions be obeyed. By coupling particles into the theory, 

we find that total cross sections are predicted to rise as a small power 

of log s, which in the model is approximately a,(s)- (log s) 116 . 
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I. INTRODUCTION 

By studying the nature of branch points in the angular momentum 

plane in Feynman graph models, Gribov has been able to abstract a 

Reggeon calculus or Reggeon field theoryi which provides a powerful 

analytic tool for the discussion of the interplay between 1 -plane poles 

and cuts. This field theory treats Reggeons as quasi-particles or 

elementary excitations in a space of one time and two spatial degrees of 

freedom. By choosing various forms of local interaction among the 

“free” field operators one can use the techniques of quantum field theory 

to study the physical or renormalized partial wave amplitudes in, say, 

elastic scattering processes. 

These field theories have been analyzed at some length by Gribov, 

Midgal and Levin‘ in a long and occasionally difficult set of papers. In 

these articles a whole set of alternative renormalized solutions to the 

Reggeon field theories were presented using at various times pertur- 

bation theory, the full Schwinger -Dyson equations of the theory, or 

simple soluble static theories as methods of solution. Further study 

of such field theories have been carried out by Bronzan, 
3 

who provides 

a dynamical reason for the famous vanishing of the triple Pomeron 

vertex. 
4 

A recent summary of ideas in the Reggeon calculus and 

references to a variety of applications can be found in the work of 

Cardy and White, 
5 

who use Bronzan’s observations to argue about the 

structure of crT(s). A full scale review of the subject will be available 
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shortly as well. 
6 

In this and subsequent papers we will examine the structure of 

renormalized Green’s functions in a variety of Reggeon field theories, 

some of substantial physical interest, using the method of the renormal- 

ization group to carry out our analysis. 

We begin by briefly reviewing the motivation for a Reggeon field 

theory and discuss some of its limitations. After this we set up the field 

theory and establish the Feynman rules for calculating the Green’s functions, 

Following this section we set up the renormalization group equations 

and study the constraints they place on the Green’s functions and show how 

they enable one to determine the behavior of these quantities in the 

“infrared” limit of small Reggeon momentum and all angular momenta 

near one. 

The particular theory we examine in this paper has a “bare” 

Reggeon with a linear trajectory passing through one at t -0 

cuo(t) = 1 +a;)t (1) 

and a local triple Reggeon coupling only. In subsequent papers we 

shall discuss both more general “bare” trajectory functions and more 

elaborate coupling schemes. This example has quite enough physical 

interest and structure in itself to serve as a model for any further 

analyses of the type we present. 

In his original study Gribov demonstrated that taking proper 

account of signature leads one to make the triple Pomeron coupling 
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pure imaginary. We find that this observation is crucial in our 

renormalization group treatment. It allows us to find (when the number of 

spatial dimensions, D, is near four) a Cell-Mann-Low zero’ of the 

relevant renormalization group functions which determine the infrared 

behavior (1 z 1, t x 0) of the field theory. We shall show that this zero 

occurs in fact at a small value of a renormalized dimensionless coupling 

constant and allows one to make a kind of perturbation expansion in 

L _ 4-D 
12 - 12’ Thus, we are able to calculate in what? priori would appear 

to be a strong coupling problem. 

We shall also present an analysis of the scaling structure that is 

dictated by the renormalization group for the Green’s functions. When 

we couple the Reggeons to particles this implies that the elastic amplitude 

has the leading behavior 

A(s,t)-s(log s)’ F[t(log s) ‘1 (2) 

where the indices y and z and the function F can be calculated as power 

series in E/ 12. (Note that E/ 12 is the natural perturbation parameter, 

which is not large when E = 2. ) In the present theory we find to first 

order in E/ 12 that y z i/6 and z C=Z 13112 when D= 2. The total cross 

section arising from (2) is then 

UT(S) 
i/6 

-(logs) I (3) 

with corrections down by approximately order (log s) 
-112 . 

Some of the scaling laws have been given by Gribov and Midgal 
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with no indication how one might evaluate the indices Y and z, or the 

function F. Our presentation has the double attractiveness of being 

direct and of showing how one may indeed determine these quantities 

in perturbation theory. There are, not suprisingly at this stage, a 

host of unanswered questions within the framework of Reggeon field 

theories. Besides the enormous uncertainty of how to choose the 

Lagrangian, which problem plagues all field theorists, there is the 

additional tricky question of how to treat external particles and 

Reggeons 5,8,9. m mclusive and production amplitudes. The solution 

of this we defer for the present. 

II. MOTIVATION FOR A REGGEON FIELD THEORY: 
REGGEON UNITARITY EQUATIONS 

The cleanest indication that a Reggeon field theory might be a 

useful tool in the consideration of branch cuts in angular momentum comes 

from an examination of the formulae for discontinuities across i-plane 

cuts. These discontinuity equations were derived in an heuristic manner 

by Gribov, Pomeranchuk and Ter-Martiroysyan some years ago 10 
and 

have been formulated and discussed in more recent work found in Refs. 

8 and 9. 

The simplest example of such discontinuity formulae is given by 

the discontinuity across the two Reggeon cut in the partial wave 

amplitude. F(!, t) for the elastic scattering of two spinless particles. 

In Fig. 1 we show pictorially the t-channel exchange of two trajectories 
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w,(t) and e,(t) which gives rise to a cut in the B plane. The analyses 

of Refs. 8, 9, and 10 tells us that 

disc1 F(P,t) = 
dtldt2 0 r - A(t, tf> t2)l 

d-A(t,t,A2) 

6[1 - cyl(ti) - a2(t2) + 11 N2( e+ie, t,t13t2)N2(B-ic ,t,t,,t,) (4) 

where 

A(x,y,z) = (xfy-z)‘- 4xy (5) 

and N2(P, t, tf, t2) is the partial wave amplitude for the “process”: 

Particle 1 + Particle 2 - Reggeon ai + Reggeon ru2(t2). We have 

suppressed signature labels and numerous factors of i’s and T’S in 

writing (4). If we switch to two dimensional vectors to re-express (4) 

[ as pictured in Fig. 21, SO that t=- 1 s’ 1 2 and ti = - 1 ci 1 2z we may write 

discEF(E,<) = 
* 2 

J 
d qid2q2 6(<f+T2-q?6 (E-E~-E~) 

-f-f+ 
N2(E+ic, q, q,,q2)N2(E-iE,~~~,~2)j (6) 

where we have further chosen to write 

E=l-B andEi=1-cri(-j<i!2). (7) 

This formula suggests that the Reggeon is acting like a quasi-particle in 

two space and one time dimension with the “energy momentum relation” 

E=l-cr(-[;[2). (8) 
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Phase space is simply 

d2ql d2q2 6 “(9’, + T2 - ;) 6 lE-Ei6i) - E2(g2)1 e (9) 

Certain conservation laws are implied by the form of the discon- 

tinuity integral. First of all, two momentum is conserved. This is not 

a surprise since the two momentum degrees of freedom are precisely 

what is left after we integrate out two angular variables from four 

dimensional space-time to form the partial wave amplitude. Second, 

there is an energy conservation rule, but this is trickier. The energy 

of the two Reggeons El + E2 is constrained to be the net energy E 

emanating from the black box we have called N 
2’ 

It is important to 

note that E is not the sum of i-Pi for the incoming particles. That, 

for external spinless particles, would restrict us to E = 2 (P = -1), 

which is not in the least implied by anyone’s discontinuity relation. We 

must view the external particles on a rather different footing than the 

internal Reggeons and regard the blob N2 as some kind of “external 

source” for energy. 

The quasi-particle interpretation is made even firmer by the 

formula for the discontinuity acres s the n Reggeon intermediate state 

shown in Fig. 3 

disc F F(E,& = h2fi < -<) 6 (1 Ej - E) 

j =1 j 
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Nn is another source function for energy E. 

One can write discontinuity equations for the Reggeon-particle 

partial wave amplitudes Nn, but it is expedient to skip this step and 

proceed directly to the four Reggeon partial wave amplitude M4 shown 

in Fig. 4. This is a function of Ei and zi for each Reggeon and the 

overall energy E. The discontinuity across the two Reggeon cut produced 

by Reggeons of energy ‘E i and momentum qy is depicted in Fig. 5: 
1 

discE 4 M OZ, Rip ci) 

=I d2qid2q2 6 (2)(,; +z2 - 4’, 6 (E - ei - E 2) 

M4(E +ie,E@l, -+ E2.~2;~i,;;1> ~~3;;~) 

x M4(E-ie, e 1> 1> ~~.;~>Eqji~~. E4>c44) . q (11) 

In this formula E is conserved in the phase space integration but 

E b Ei + E2 $ E3 + E4. Here .si = 1 - a(- / < / 4, as in Eqs. (6) and 

(IO). Momentum, of course, is conserved throughout. In the language 

of potential scattering as used in Ref. 9, this equation is an off the 

energy shell unitarity formula as are Eqs. (6) and (10). 

Now if we agree to deal exclusively with two-to-two particle 

processes, then all Reggeons appear inside internal integrations in 

which E is conserved. In that instance we may, in Eq. (II), set 

E=E1+E =E3+E 
2 

4, that is go on the energy shell and encounter the 

usual form of the two particle unitarity relation. Jf we want to consider 
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inclusive processes such as in Fig. 6 where the function N2 appears, 

we shall have to enlarge our treatment to off energy shell processes. 

Even then all Reggeons appearing inside the black box of N2 are on shell, 

(A. R. White informs us that the proper treatment of Regge cuts in 

inclusive processes may involve more than merely continuing our 

formulae off the energy shell. ) So agreeing to consider only internal 

Reggeons in subsequent discussion, we write the discontinuity of M4 

across the n Reggeon cut as 

disc M4 (Ei,zi) 

n 

- 

j =I 
n 

6[E+ +E2 - cj ‘cj )I Mn+2 (El+i~e , cl, E2+je ,g,, cl. Ti.. . en,< ) n 
j =I 

Mn+2 
(E 

3 
-ie,k 

3 
, Edie, k 

4’ El’ ;i i”..En’ n i-J (12) 
Ei ,,+E2 =E3 tE4 

The restriction to E = E1 +E 
2 

= E3 + E4,0r going to the energy 

shell, puts us at I = al + a2 - 1 in M 4’ By the analysis of Refs. 8-10, 

we see that this is the first nonsense point in the conventional partial 

wave amplitude. 

There are two standard procedures for “solving” discontinuity 

equations like (11) and (i2). The first is the S-matrix approach as 

considered at some length in Ref. 9. This is useful when one knows or can 

vigorously argue that only the two or possibly three Reggeon cuts are at 

all important to the problem at hand. This may well be the case when 



-lO- NAL-Pub-73/91-TRY 

a(O) < 1 for all the Reggeons. The second is a field theory of the 

quasi-particles with E(c) = 1 - cut- IT] 2). This is useful when many 

cuts become important and is indispensable when cu(O)x 1 for any of 

the trajectories. In particular when one of the trajectories is the vacuum 

singularity with u(O) = 1, then as a matter of principle, all cuts become 

important in the neighborhood of t =0 and one must either sum them all 

or indulge in generous foot shuffling to defend any other procedure. 

In a langauge familiar to many readers we may describe the 

situation when a(O) = 1 as an infrared or zero mass gap problem since 

the E, c relation is such that E(O) =O. Field theory is notably more 

successful than S-matrix theory for dealing with infrared situations, and 

indeed, is just the tool required. 

The field theoretic approach has its drawbacks, of course. One 

can know the functions like Mn in (12) only by solving the field theory. 

This is a formidable task in general and indeed one usually turns to 

perturbation theory in some coupling of local fields. There is also the 

unavoidable ambiguity of what free Lagrangian and what interaction 

Lagrangian one is supposed to choose. On top of that, one must face 

renormalization. The thing one is guaranteed to satisfy is the full set 

of unitarity equations to whatever order in perturbation theory his fortitude 

has lead him. This is the motivation for writing a Reggeon field theory, 

and we now turn our attention to that. 
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III. THE FIELD THEORY WITH A TRIPLE COUPLING 

Our task is now to describe a field theory for Reggeons which have 

the energy-momentum relation E = 1 - iu(- 1 q/ 2 ). Clearly to proceed in 

any but the most formal sense we must specify the E,q relation for the 

non-interacting field and then choose an interaction, Let us start by 

taking a linear trajectory 

cru(+Q2) = a0 - c+p (13) 

so 

E = @; 9” +(l-cuo) (14) 

I -1 
This is reminiscent of a non-relativistic particle with mass m = (2~~) 

and energy gap (i-u ) 0’ 1 
Clearly other E, < relations lead to a whole 

variety of theories. Some of these will be explored in subsequent work.1 

We associate with the quasi-particle a field $(;, t) in D space 

dimensions and one time dimension. The generalization to D space 

co-ordinates is a device which will prove very convenient in the following. 

Physics takes place at D=2. 

The Lagrangian which gives (14) is 

-q(h) = $+k,t, &(&)I 

- (Y o v ++(;d,t,*V +(;t) - A0 ++(ih G&t) (15) 

where A 0 =I -ao. 

Varying the action 
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A0 = dDx dt yO (G, t ) (16) 

with respect to $ and +* gives 

a - 
iz+(X.t) = -aOV 2$,x,t) + A,+(&), 

for the equations of motion. This clearly leads to 

+2 
z=ahk +A 0 

(17) 

(18) 

for the non-interacting theory. 

For an interaction we have a wide range of choices. The Feynmen 

graph analysis 1.2. indicates we may choose a bare coupling with any 

number of Reggeons. Only the coupling of 3 or 4 Reggeons is renormali 

izable in any conventional sense, so we will restrict ourselves to those 

couplings in order to have any control over the results. If the 

Lagrangian does not have a bare triple coupling, then no three Reggeon 

vertex function will ever appear in the theory. This is, however, of 

prime interest so we will study in this paper the field theory whose 

Lagrange function is 

x 
y&t) = PO&, - -+ [+f&)+(&2 + kc. 1 (19) 

and consider $ 
4 

couplings in other publications. 

It will be important in our subsequent discussions to record the 

canonical dimensions of the various quantities appearing in 2 We 

distinguish between dimensions of space and dimensions of time. Using 
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the standard notation of [ quantity] to indicate the dimensions of any 

quantity we note that 

[xl = k-f, (20) 

[tl = E-’ (21) 

and, of course, 

[A = 
I 

d”x dtfi = E”ko. (22) 

This leads immediately to 

[ $1 = kD’ 2, (23) 

and 

[ ,;I = Ek-‘, 

[A,] =E, 

hoI = Ek-D’2. 

(25) 

(26) 

The important point to observe is that the coupling X0 is not dimension- 

less. We shall shortly find a dimensionless coupling constant. 

The quantities of interest to us are the Green s functions for n 

incoming and m outgoing Reggeons 

.(n, m) (; 
i’ t*i,. :. Xn’ tm; 7 i’ tyi’ “. ?rn’ tym) 

= <O’T[++(+y&.. 

(27) 

where the distinction between incoming and outgoing Reggeons is required 

because $I is not hermitean and contains destruction operators only. 

Indeed 
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(2a)D’2 

ei<. x 
a6 

NAL-Pub-73/91-THY 

(28) 

where a(q) annihilates the vacuum 

and 

a(<) 10 p = 0, (29 

[ a(G), a+(C) I = aD(;-;;), 

assures that 

[ $(x’, 01, .$+(g 0) I = tsD(;;-;, . 

(30 

(31) 

These commutation relations allow us to derive the Feynman rules 

for the computation in momentum space of the Green’s functions 

n n+m n n+m 

6(&- 2 Ej) bD( x <- x qj) G(n’m)(Ei,~i) 

i=l j=n+i i=l j=n+i + + + + 
=I D 

d x dt dDy dt 
-ik 1 .xf+iE t 

i yi *** + ik 
n+m “rn 

-iE t 

1x-i”’ myme 
n+m ym 

.(n, m) (;; l’txi’ . . . Frna tymj. (32) 

We record these rules: 

1. Draw all topologically distinct diagraphs (graphs with arrows 

indicating the directions of propagation of the Reggeons). 

2. 
/ 

dDq dEq around each loop. 
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D+i - 

3. At each vertex put -i A,/ (2rr) 2 . 

4. For each Reggeon of momentum k’, energy E use the propagator 

G ‘1’;L)(E,~~‘=i/[E-,~~2- Ao+ie] . 
0 (33) 

5. For each two Reggeon loop with both momenta in the same 

direction, multiply by i/2. See Fig. 7. 

6. Conserve E and q at each vertex. 

7. Because of the ie prescription in 4, telling us that only the 

retarded propagator enters this theory, Reggeon loops in which all 

momenta go the same direction are zero. For example, Fig. 8 is zero. 

As an example, the diagram in Fig. 7 gives the contribution to 

G(” ‘) (E, k’, 

[4YW2[ -iLA]2 ipq 5 Eqea(/;-Ao+ic E~Eq-a~(~;i2-ag+i~ . 

(2T) 2 (34) 

Using these rules for D=2, A0 = 0 and X0 =iro, r. real, one repro- 

duces Gribov’s Pomeranchukon interactions abstracted from hybrid 

Feynman diagrams. 1 

IV. RENORMALIZATION GROUP CONSTRAINTS ON 
REGGEON GREEN’S FUNCTIONS 

The unrenormslized theory coming from the evaluation of G (m, n) , 

to whatever order in perturbation theory in X0 one calculates, depends 

on the parameters A 
0’ @ o’ > A o and possibly a cutoff A to control the 



-16- NAL-Pub-73/91-THY 

ultraviolet behavior. The quantities appearing in the Lagrangian will 

be renormalized by the interaction and acquire new value; X, CY : and A. 

We wish to consider a theory in which both the bare Pomeranchukon inter- 

cept 1 - A0 and the renormalized intercept 1 - A are one, so A 

ywhich is a function of :, 

= A = 0. 

This requires a mass countertorm in and w. 

to be determined in perturbation theory. 

To define the renormalized theory we require a “subtraction” or 

renormalization point at which to define the renormalized quantities 

A and CC’. If A were not zero, it would provide a natural (but not a 

mandatory) normalization point. Since it is zero, we must seek another 

prescription. It is convenient to choose this point away from the various 

branch points in E which arise in perturbation theory at En = cro/ i?in. 

If we look at Fig. 9 where the branch point trajectories are shown, we 

can see that by selecting a normalization point in the fourth quadrant of 

-2 
the E, k plane we will stay off all perturbation theoretic cuts. For 

simplicity we will normalize at E = -EN < 0 and c2= 0. Any other 

choice entails a finite renormalization. 

Our discussion will concentrate on the connected proper vertex 

functions I? (n,m) defined by taking off the external legs of G h, ml : 
C 

n+m 

I-( n’m) (E&. . . Enm,T;ncm, = -) G(” ‘)(Ej,I;J)-f 

j =i 

xG h,m) \Et> i;, . . . E 
C 1 n.;m ’ %+m) * (35) 
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This has the simple virtue of our not having to continually fret about the 

singularities associated withthese external propagators, or with delta 

functions associated with disconnected contributions to G (n,m) . 

Now we place a set of conditions on the renormalized vertex 

(n, m) functions F R which serve to define the renormalized quantities 

a’and A , First we ask that the singularities of the inverse propagator 

r(l,l) 
R 

(E,c2) occur at E = O(1 = 1) when c2 = 0 (t =O), so 

r(l,l) 
R (E, c2, = 0. (30) 

E=O 
-2 k =o 

This does not commit us to a pole in the renormalized propagator. It 

merely says that the singularity, whatever it may be, passes through 

P =I, t=o. This is the embodiment of our restriction that A = 0. 

Next we want the inverse propagator to look more or less like 

LG 
0 

(1,1)] -1 and, of course, reduce to it when A 0 
= 0. This leads us 

to require 

and 

1, 

E = -E 
-2 

n 
k =o 

(37) 

- i r (1,1) (E k’2) a 

a!T2 R E=-E 
*2 

N 
k =o 

= -a’(EN) ~ (38) 

Finally by noting that T (1,2) m lowest order perturbation theory 
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is just - i X0/ (211) 2 we choose our final normalization condition to 

be (see Fig. 10). 

=R (I’ 2, (El&, E2,c2, E3,c3)i 
i X(‘EN) 

: - 
D+1 . (39) 

El= -E 
N (27r) 2 

E2=E3 =-E 
N/2 

i$ iTj = 0 

Before employing these conditions perhaps a word is in order about 

the spirit of this and all renormalization group investigations, What we 

are doing in essence is giving up the desire or ability to compute A, 

(Y ‘and X from the given Lagrangian. Instead we are choosing their 

values by our normalization conditions, and then we shall parameterize 

all the other Reggeon Green’s functions (presumably the full content of 

the theory is in them) in terms of these parameters. The parameters 

iu’(EN) and A (EN) are not to be thought of as the trajectory slope or the 

renormalized triple Pomeranchukoncoupling. The former, if indeedthere is 

a trajectory, is determined by finding the trajectory and finding its slope. 

(1, 2) The latter is a function we have called F R . It is true that as X0-O, 

cu’(EN) - ~y’a andUE )+A 
N 

o, but otherwise the parameters have no 

special significance. 

The unrenormalized Green’s functions depend on Ei , gi, ~6, 

X o and possibly a cutoff A 

(40) 
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h m) The I? R depend on E i, ci, Q’, Xand EN 

r(;m)(Ei,ki,O.,EN). (41) 

We choose to eliminate X(EN) in favor of a dimensionless coupling 

y(EN) = 
D/4 - 1 

. 
(42) 

Note at this juncture the simplicity which transpires at D-4. 
11 

The renormalization procedure consists of replacing +(x’, t), 

the unrenormalized field operator, by $,(g, t) which is related to jl 

by 

@‘t) = z-1’2+(2,t) . (43) 

(n, m) The proper vertex functions I? R and I? h,m) are given then as 

n+m 

T(;m)(Ei>r;i> cy ,y. EN) = Z 2 .(n’m) (Ei& ~6, X0, A). (44) 

The so called renormalization group equations then follow from the 

straightforward observation that r: h m) , not knowing about E N’ cannot 

depend on it, so 

EN &+ [T(n’m)(Ei,ki,iYO/,Xo,A)l =O. (45) 

Using the relation between I? and PR, this translates into 

[E a 
a 

N 8EN + P(y) a + 5 (Y. ““F- 2 
ay 

(n+m)y(y)l 

Xl- (n’m)(Ei.;i,y,u/,EN) = 0, 
R 

(46) 

where 
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and 

V(Y) = EN &-- log Z(,;, X0, A, EN) (47) 
N ’ A A fixed *o’ 0’ 

p(y) = E a 
N 8EN Y (EN) 

CC;, X0, A fixed 

a 
&(a', y) = EN q- a'(EN) 

~6, X0, A fixed 

(48) 

(49) 

The functions p and y are familiar from modern renormalization group 

analyses ; 12 the function L is present because cu’is renormalized in 

theories with bare linear Regge trajectories. By dimensional analysis, 

5 and 51~~’ can depend only on y. If the E, c2 relation had been 

E2 = -%g2, 5 would be zero. Although the functions p, y, and 5 will be 

known only in perturbation theory, they serve as we will now see to 

(n, m) 
determine non-perturbative properties of r R ~ 

The dimensional analysis of Sec. III tells US 

[,$,m) 1 = E kD-(n+m) D/ 2 (50) 

This means we may write 

e m, (E&, y, a’, EN) 

(2-n-m)D/4 
(51) 

This observation tells us that 
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( 5Ei, ‘;1, y, LY’, EN) = 

EN [ 1 E~/E (2-n-m)D/4 

=9- - Q/E 
G$ 

=<I- ‘n~m)‘Ei,~i,y. $ 
EN 
-g- 1. (53) 

In the renormalization group equation we may eliminate EN a/ aEN in 

favor of Eta/ 8 5) using 

5- ar 
a5 

(“,‘m’(~Ei.iTi,y,~‘:EN) = 

(i- PI& - EN + ) r(~m)(5Ei,~i,y, d, EN ), 
N 

so 

i 
a -_ 

5 a5 P(Y'L+[+ W,y)&+ [ yQy(,) - I]} ay 

xr (nR'm'(tEi, ci,y, cd, EN)=O. 

The solution to this equation is standard 
12 

and is given by 

rR (n’m)(SEi, ci, y, (Y’, EN) = 

em’ Fi> xi, 7 C-t’, Z’f -t), EN I 

0 

x exp i { 
dt’ 1 -( “2’-“’ Y rwtv} , 

-t’ 

(54) 

(55) 

(56) 

where 



-22- NAL-Pub-73/91-THY 

p = -p [‘j;(t)1 , (571 

y = c/(t) - c [a’(t), j;(t)1 , (581 

and 
t = log 5. (59) 

If we were to know p, 5 and y, then the renormalization group constraint 

in (56) enables us to study I? R hm) (E i, ci’ as the Ei vary for fixed k ,. 1 

Equations similar to (55) can be derived for the response of I’ R (n,m) 

when the Ei are fixed and the ki vary, or when both the Ei and k’. 1 

vary. The Reggeon field theory is richer than relativistic field theory 

because of the absence of Lorentz invariance linking E and k’ dependence. 

In Eq. (56) we are interested in E.= 0 or 5 - 0 or t - -a. 1 

Alas, knowing p, 5, and y exactly is tantamount to having solved 

the full field theory. In that case, of course, the renormalization group 

is a rather redundant device. So we turn to perturbation theory to act 

as our guide. First, we wish to know Z. This we evaluate by computing 

r(l,l) (E, c2) to some order in X0 and using the normalization condition 

(37 1 to find 

1 
Z’ub> A o> A, EN’ BE 

= ~irW)(E,~2) . 
(60) 

E- -E 
N 

T;2 = 0 

Knowing r(', ') also allows us, via Eq. (38) to determine @‘(EN) 
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- @‘(EN) a =- 
Z -2 

i p, 1) (E k’2, 
(61) 

ak E=-EN 

k’2,o 

We will evaluate I (i,f) to the lowest nontrivial order in perturbation 

theory by considering the graphs in Fig. 11. This yields 

ir(*‘l)(E c2,,/ X ) = 
0’ 0 

x2 y2 

E-cCOk-‘+ ’ 
2(2rr) 

D 

which gives 

A,” rrD” I-(2 -D/2)(EN) 
D/2 - 2 

1 
- =it 
Z 

2(2iilD (2 (Y ‘0’ 
DI 2 

and 

0 DI 2 
y(y) = ; 

r(3 - D/2) y2 

2(2rr) 
D ’ 

(631 

(64) 

In writing this expression we have not introduced a cutoff . Instead we 

use the simple device of keeping the dimension D of space a free para- 

meter and letting it define a regularization procedure. This trick has 

been widely employed and discussed by ‘t Ho& and Veltman i3 in the 

context of relativistic field theories, especially gauge field theories. 

In all expressions where there is no singularity at D-2, for example y, 

one may freely set D=2. 

Similarly computing @‘(EN) we find for c (a’, y) to this order in 
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1 lrD/2 
5 (a’,y) = 2 F, 

0 
r (3 - D/ 2) ,,y2 

Z(Zr) 
D (65) 

The evaluation of A (EN) and then p(y) involves the computation 

of the graphs in Fig. 12 at the normalization point. Then 

-i A(EN) 
(D+lx = Z3” r(“‘)(Ei,zi) 
(2v) 

This yields for p(y) 

normalization point 

where K is the constant appearing in y and 5 

r-(3 -D/2) 

4(2~) 
D ’ 

and 

E=K[8I(D)-31 , (69) 

and l-2W/ 2) 

10) = 2 D,2)- 1 (70) 

(66) 

(67) 

(68) 

Noting that I(4) = 1, I(3) =;:(2- fi) > 3/8 and I(2) = log 2 > 3/S, we see 

that in the range 2 5 D 5 4, the constants K and g are positive numbers. 

The function p(y) has the form shown in Fig, 13. 

The general analysis presented in Ref. 12 informs us at this 

juncture that the zero in p(y) at y=O governs the behavior of r ((E) as 

5- m because 
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for D < 4. The asymptotic behavior as 5-O which is our interest here 

is governed by a zero, absent in (67), where *>o 
dy ’ 

The astute reader will have observed that until now our entire analysis 

has been carried out with X0 and A and y real. The Gribov study of Feynman 

graphs tells us that in fact X0 is pure imaginary: A0 = i ro, X = ir and 

y =ig. This means 

P fy) = i 
f 

(4-D) --g+[z+$K]g3 
4 

= i P(gJ/. (73) 

The term P(y)8 /ay becomes p(g) d 2 g in the renormalization group 

equation (55). A function z(t) replaces y(t) in all other formulae where 

Now the important change brought about by this alteration in A is that 

p(g), shown in Fig. 13, has a zero where d@dg > 0. The general 

analysis tells us that this zero at 

1 g1 = L*l z (75) 

h m) governs the infrared or E + 0 behavior of I’ R (E., 1 . . . ). 

Since the dimension D is at our disposal we see that for D near 4 

the zero ( a classic Gell-Mann Low zero7) in p(g) is for small 
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(0 [ (4-D)2 I 1 renormalized dimensionless coupling g. The importance of 

this observation comes when we look at Eq. (56), the solution to the 

renormalization group equations. We want to know for E-0, g(-t) as 

t =loge---m. Now 

withx> @. This has the solution 

z(t) = e 

4-Dt -II 2 
1 + a 

g2 
4-D 1e 

-z- _ I] 

(76) 

(77) 

using the boundary condition g(O) = g, SO 

limz(-t) = gl’ 
t- -m 

Lf D*4, or bettergi, is small, then the infrared behavior of r (n,mJis 
R 

governed by small renormalized coupling and one may hope to determine 

to excellent accuracy the full r (mm) by doing perturbation theory on the 

right hand side of (56). This whole scheme is entirely self-contained 

when we recall that we only know the crucial functions p, y, and 5 for 

small g anyway. 

What is suggested then is an expansion in the parameter E = 4-D 

of all Green’s functions. Away from points of known non-analyticity in 

the r (am) this ought to be a meaningful procedure. The justifiably 

nervous reader will observe now that for D=2, which is where physics 

lives, E = 2 and in most ways of reasoning that is not a small number. 
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However, examining the functions y and C as an expansion in E we see 

that near g = gl 

Y - - E/12, (79) 

and 

-$-c/24, (80) 

which is much more to one’s taste in expansion parameters. 

V. GENERAL CONSEQUENCES OF A ZERO IN p(g) 

In the previous section we discovered, albeit in perturbation theory, 

that when the bare triple Pomeron coupling was taken to be purely imaginary 

a zero appeared in the crucial function p(g) at g = gi where dp/dg > 0. 

Here we would like to explore more general consequences of such a 

zero in p which may or may not occur at small g=gl. 

First, suppose that the renormalized coupling g chooses to lie 

exactly at gl where p(g,) = 0. Then turning to the solution of the 

renormalization group equations we find 

and 

p = 0, 2(t) = gi, 

1 d Z ‘(t ) 
(y/(t) dt = 

1 - qp- = z(g,) ) 

so 

Z/(-t) = Q’S 
-z$) 

(84) 

(82) 

(83) 

In perturbation theory z(gI) > 1. 

The renormalization group equations tell us that 
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i- (l),(g,) 
XC 

D 

i- f%f?y(g,) + zk,) !$(2-n-m) [I EN 
q(2-n-m) 

=E E X 
N-7 

using the dimensional analysis of the last section. This result implies 

that r(SEi,. . . ) has a very scaling property 

I+ ;m)‘Ei. i+p: EN) = 

E. -a,’ $,.r,, 

X4 
m 
2 -- E 1 

n,m E ’ EN EN 
Q’, g 1 1 ’ (86’ 

A 
where o 

n, m 
is a function not determined by this analysis and E = 

~2 En i=l 
is convenient energy to use for the scaling. What is new in Eq. (86) is 

the fact that on m depends on$- 
N 

and Ir’ki k. only in theproduct form - * : 

indicated. 

This scaling result forr h,m) can be found in the work of Gribov 

and Migdal who discuss it for n+m = 2 and 3 at D=2 in their Schwinger- 

Dyson equation analysis. The indices y and z are undetermined by them. 
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At least in principle we know how to proceed to find y and z here. The 

Schwinger-Dyson equations do provide a set of terrifically nonlinear 

equations which yield up to the o n, m’ 

There is an immediate consequence of the scaling equation which 

is of some importance. Consider Pg’ ’ 1 which takes the form 

r’; 1)(E,~2,gl, Q’, EN)=EN -$ Ll 
1-v(g,’ 

-zk,) -2 
k cy’ 

1 ---->gli . 
EN 

(87) 

If p> 1’ 
R 

has a zero which moves with c2, then that trajectory must have 

the str,ucture 
Uz(g,) 

f(gl) > (881 

where f(gl) is just some function of gi. Clearly the trajectory function 

i-E=cu 

-2 
-2 
k cy’ 

Ock ) = ’ + EN EN c-1 

Uz(g,’ 
f$’ (89) 

-2 is not analytic at k = 0 in general. Our perturbation theory analysis 

indicates that z(g,) > 1 so that the slope of a(z 2, at c2 = 0 is infinite. 

The situation described here is what the renormalization program tells 

us to expect on quite general grounds. It means that the “weak coupling” 

Pomeranchukon favored by Gribov is suspect. On the other hand, we shall 

later see that the renormalization group also suggests a Pomeranchukon 

which is somewhat different from the Gribov-Migdal “strong coupling” 

Pomeranchukon. 
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We have assumed thus far in this section that the renormalized 

coupling g chose to sit precisely at a zero of p(g). Now we relax this 

and imagine that p(g) has a zero at gi with positive slope and that g lies 

either above or below g, but between gf and the next zero of p(g). We 

approximate p(g) as 

P(g) = PO@ - glL PO’ 0. 

We may solve for g(t) now 

qp = p, [‘z(t) - Q 

(90) 

(91) 

to find _: 

-at’ = gi + 5 
PO 

k-g,‘. (92) 

Similarly we may solve for Q/(t) for t + m 

‘G’(t) = ,2’Co exp [ z(g,)t + 0 (e 
-Pot 

) 1 , (93) 

where m 

C 
cz 

= exp 2 
n=1 

Zn (g-g, In/ P,n, 

and we have written 
m 

z(g) = zk,) + 1 
n=l 

znk-gl) n. 
For the term in the expression for r R (n’m)(SEi, . D. ) reading exp 

-L - n+v [g(t’)) 
I 

wefindfor t -+ -a, that is t-0 

-t 

PO 
Cyexp tLf-e?k,)l + o(5 ) 

1 I 
, 

(95) 

where 



Using these results in the dimensional analysis above we find that 

for small E i and fixed zi 

PR 
(& m’ (E i,;; 

i’ g, a: E N ) = 

Cy EN [k+‘2-n-m’D’4 (-4”‘” 
1l32-n-mi - (*y(g,) 
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m 

Cy = exp (y) c ynk-gi? I P,n, (97) 

n=i 

and the y, are the coefficients of v(g) in an expansion about g, 

m 

Y(P) = Yk,) + c Ynk-gl’n ~ (98) 

n=l 

E. 
E) 

-z(g,) i;,. k’. 
x $n m +f-- 

EN 
~Cadgl’ * 

EN 
(99) 

In other words the scaling result is essentially the same with two dimension- 

less functions of g and gt, Cc and C , which rescale v ‘and on m respect- 
Y 

ively. We have also derived the renormalization group differential equations 

when the ki are scaled to zero with the Ei fixed, and when both are scaled 

together. We find that Eq. (99) continues to hold in both these limits, 

and is therefore true when either the Ei or 2, (or both) are small. 

From our scaling formulae we can make an interesting observation on 

the renoramalized triple Pomeranchukon vertex P (1,2) 
R ’ Suppose i?(i ’ )yields 

up a trajectory E (L (c2) I”. (1,2) Set the Ei in TR on these trajectories 

and then let ci - 
1-e 

n2 ki and consider the limit as n - 0. That is 
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consider the limit of l? (1,2) 
R 

as the Ei - 0 and the ki go to zero staying 

on the Regge trajectories. Then Pi’ 2, behaves as [ n 
iI z , i-(D/4)2-312~ 

which, in perturbation theory, vanishes as n +O. So the renormalized triple 

Pomeranchukon vertex vanishes in general as a non-integer power of its argu- 

ments. All discussions of the triple Pomeranchukon vertex which have 

an analytic vanishing as the arguments go to zero would seem to require 

r e -examination. 

Our general scaling results permit us to calculate the scaling 

function I$ 
n, m 

as power series in E. This will complete the program 

discussed in Sec. IV and lead to some important points. As an example, 

we consider o 1 . ,(p, E), where 

g. k’, 

-c CT’, 
EN ci 

(100’ 

an:, we now regard the dependence on g 1 as a dependence on E. We 

suppose $4 1 can be expanded as a power series in its second argument. 

4 l,l(P.E) = f2Y;:cpI 

n =O 

Using this we write the right side of Eq. (87) as a power series in E. The 

first two terms are 

x 
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’ (102) 

-z(O) &2 E where p. = 
q-’ We use y(e) = - 12, Z(E) = i+ 2, 

and the renormalized second order inverse propagator 

CA2 +2 
- -%[--El 

12 2 
(Pn(Cy’k2E - 2E ) - 11 +o(e2) (103) 

N 
to find 

ip’ 
1 ,(P) z-&L 1+ i pl bn(1 + $ p) - 41 . (105) 

These results strongly suggest the presence of a Pomeranchukon pole 

near 

p = -I 4-+4((1+In2)I (106) . 

a’(t) = 1 +EN (107) 

When t is negative, there are poles at both cu(t) and its complex conjugate. 

Two final points are worth noting. When z2 -0, wefind 

iF(l’l)(E 0 g,ru’E ) = (i- 
El 12 

R 2 3 ’ N s)E(-C) 
EN 

(108) 

III the next section we shall see that PR makes the leading contribution 

to the total cross section. From Eq. (108) it follows that this 
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contribltclon is positive, so the renormalization group avoids the pro- 

blems which lead to a negative cross section in the Gribov-Migdal 

strong coupling theory. 

The second point is that 4 1 ,(p, E ) should behave like const. x 

(p)byk )1/Z(E) for large p so that IYR (” I) is finite for general c2 and 

E=O, as it is in perturbation theory. This means that 4 i”:(p) has the 

leading behavior for large p 

$(n) 1, l(p) = -di n P? 
n! (24)n 

(109) 

(0) This behavior is verified for I#J~ 1 and I$ :‘i ~ We observe that the 

natural expansion parameter in Eq. (101) is (E Pn p)/ 24. Thus, while 

+2 Eq. (99) is valid for finite k when E is small, any finite number of terms 

in Eq. (101) is not useful in this limit. This is not surprising since we 

have only had to calculate the two Pomeranchukon cut to obtain the first 

two terms. 

VI. USE OF THE SCALING RELATIONS ON REGGEON GREEN’S FUNCTIONS 

We would like to apply our scaling formulae on the Reggeon Green’s 

functions to study the asymptotic behavior of total cross sections and some 

properties of elastic cross sections. We proceed by assuming that there 

are some given particle Reggeon couplings N which take two particles 
J 

into j Reggeons as in Fig. 15. 
j 

Further, we assume Nj is just a constant 

independent of E = 
c 

E. . 
J 

k=1 
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With this we can write the contribution to the partial wave 

amplitude F(E, q ) coming from n Pomeranchukons being emitted from 

the left vertex by Nn interacting in all possible ways via G km) and pro- 

ducing m Pomeranchukons to be reabsorbed on the right by N ; see 
m 

Fig. 16. The analytic expression for this is 

I n ,(E,qt) =N; NP m 
dDk, e.. dDkn+mdEi . . . dEn+m 

6(Ei+.‘. +En-E) 6D(+.. +i;,- q’, b(En+l+ -. . +En+m-E) 

6 “iir,+,+. . . +<n+m-;) G (n~m~El,~l, . a. Enw,i;,+,) . R 

h m) 
Now using the scaling properties of TR derived above we find the 

integral I, m can be scaled to yield 
Y(P,) 

I n ,(E,;) = E 
-l+&,) 

E 
(n+m-2)[ 2 + fz (g,)l 

XF 
Q!,) 

n,m(1;/2/E ). 

This result involves no approximation when g=gl, the zero of p(g). When 

gbgi’ we proceed somewhat differently. The function In m can also 

be written as an integral over unrenormalized Green s functions G (n,m) , 

with external unrenormalized vertices N n 
= NR(Z)“12 

n . The equality of 

these expressions allows us to repeat the steps of Sec. IV: a differential 

equation analogous to Eq. (55) can be derived, with its solution again 

-2 
yielding Eq. (iii) for either E or q small. The reason this rederivation 

of Eq. (111) is more than an academic exercise is that the energies and 
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momenta in the integral are not necessarily small when E or q are. 

Finally, we note that disconnected parts of G (n,m) give rise to no problems 

in the integral. 

From the Sommerfeld-Watson transform we learn that the elastic 

amplitude given via contributions like I is 
n, m 

Yk, ) 

Tel (s,t) = SUog s) 
-(n+m-2)[ 2 + ~z(g,)l 

n,m=l 

x ‘n,m [t(log s) 
z(g,) 

1 . (112) 

and 

In perturbation theory for D=2 we learned above that 

y(g,) = -I/ 6 > 

z(g,)- 1+1/12 = 13112. 

(113) 

(i14) 

To a good approximation then we may write for large s, fixed t 

T el (s,t) - s(log s) II6 ‘G 

t ’ 
1 J tt1og s)i3’*21 

+ (log s) 
-I/2 5 

1 2 [tuog s) 13’121 + O[(log Sri1 
f 

. (ii51 

From this expression we have an approximate expansion of oT(s) 

0 T(s )-+ (log s ) 116 [ A + B/ (log s )I’ ‘+ . . ~ 1 , (116) 

in which, if we take the simple model we have made quite seriously, the - 

leading term, A, factorizes (See Fig. 17). 
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VII. DISCUSSION 

In this paper we have considered in detail the implications of the 

renormalization group for the most simple physicallyinteresting inter- 

acting Reggeon field theory. We chose a Lagrangian 

xO 
- ,[~+(;;,t)*(;;,t)‘+h.c.l , (117) 

which represents a bare quasi-particle with an energy momentum relation 

/ -2 E=ruok interacting with a triple coupling. Our major observations 

about this theory are (1) when A 
0 =ir 0’ r. real, as suggested by Gribov’sl 

treatment of signature, then the renormalization group equations for the 

renormalized vertex functions l? (E,, k.) have an infrared stable zero 
R 1 i 

of order v’m, where D is the number of space degrees of freedom. 

When D 5 4, this suggests a perturbation theory (akin to the E -expression 14 

of statistical mechanics; indeed, suggested by it) around the four dimensional 

theory. (2) When such an infrared stable zero (Cell-Mann Low zero71 is 

present, the Reggeon Green’s functions obey the scaling properties 

summarized in Eq. (99). (3) In a model of the couplings to particles 

using the values of the renormalization group functions found in perturbation 

theory we find, for example that 

oT(s+ A (log s)t”{i +O[log s)-“~$ (118) 
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where A factorizes. (4) We have pointed out the radical difference 

between the renormalization group results and the “weak coupling” 

Pomeranchukon of Gribov. Typicalinstances of this difference are 

the cusp with infinite slope in the Pomeranchukon pole trajectory at 

t =O, and the fractional power vanishing of the triple Pomeranchukon 

vertex function. On the other hand, we also disagree sharply with the 

(1 1) Gribov-Migdal strong coupling solution. At c2=0, we have F R 

vanishing faster than linearly in E, whereas Gribov and Migdal have 

r(l, 1) 
R 

vanishing less rapidly than linearly. We might point out that a 

strong coupling solution also seems to have difficulties when the triple 

Regge coupling is real. Figure (13) indicates there is no Gell-Mann Low 

zero near the origin for D< 4; and for D > 4 the theory is nonrenormalizable. 

Thus any zero,if it exists, cannot be calculated by searching for a scale 

invariant dimensionality. 

The fact that Green’s functions like the inverse propagator vanish 

-2 more rapidly than linearly in E or k raises a subtle question. Gribov 

has stressed that the high energy and momentum parts of Reggeon graphs 

are really arbitrary because the bare vertices and trajectories have 

dependence on energy and frequency which has been suppressed here. 

If we arbitrarily modify the high energy and momentum tails of graphs, 

it would seem that linear terms in E and c2 would appear in Green’s 

functions like IF’: t ). This would imply that the results we have found 

depend on a special treatment of the high momentum and energy parts of 
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graphs, and are unstable against small modifications of graphs. It is 

difficult to characterize such modifications systematically, and to treat 

them by the renormalization group because the vertices and propagators 

have new energy and momentum scales in them. However, we have 

checked the effect of keeping a finite cutoff A in the graphs, and find the 

behavior cited in Eq. (99) still holds. Perhaps, then, the additive 

argument we have given is invalid because the renormalization group is 

multiplicative. Further studies are planned. 

Any number of future investigations are suggested by the analysis 

we have carried out. The most straightforward set of investigations 

-2 would include: (a) alter the E,k relationship of the ‘bare’: or 

non-interacting theory, (b’> change the nature of the interaction [the 

(Jo theory corresponding to the G3 theory in this paper has been studied 

by the authors; the results will be presented elsewhere] , (c) try to 

bootstrap the renormalization group functions y and 5, which govern the 

structure of T elasti.(s, t 1, by studying the Schwinger-Dyson equations 

of the field theories. Clearly the interesting possibilities are legion. 

At our present stage of understanding of the Reggeon field theories 

it would perhaps be hasty to point directly at the most physically significant 

possibilities. One can argue with some confidence, both on the basis of 

the present work and that in Ref. 2, that the major alterations of the 

conclusions established here will be in details, no doubt interesting, 

involving the renormalization group functions. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

FIGUR,E CAPTIONS 

A representation of the discontinuity across the two 

Reggeon cut in the particle partial wave amplitude 

F(P , t) arising from the t-channel exchange of 

Reggeons cul and a2. N2 is the Reggeon-particle 

partial wave amplitude. The x’s on the wavy 

Reggeon lines indicate that a discontinuity has been 

taken. 

The expression of Fig. 1 with kinematics expressed 

in terms of two dimensional vectors gi*t = - / 4’1 2 

in this picture. 

A picture of the discontinuity across the n Reggeon 

cut contribution to F(P) t). 

The Reggeon-Reggeon four point amplitude. 

The two Reggeon discontinuity in E = 1-P of the 

four Reggeon amplitude. Since E i; Et + E2 in 

this expression, it is an off-shell unitarity relation. 

Fig. 6 

Fig. 7 

A single particle inclusive cross section as s -+ m, 

t, M2 fixed. One encounters the “off-shell” N2 here. 

The lowest order Feynman graph correction to the 

Reggeon propagator G (1.1) . 
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Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11. 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

A possible Feynman graph contribution to the 

Reggeon propagator G (l,l) . Because of the i E 

prescription which gives only retarded propagation, 

this graph vanishes. 

The trajectories of poles and perturbation theory 

branch points in the E, c2 plane. The normalization 

point E = -EN,c2 = 0 is chosen out of harm’s way. 

The renormalized triple Reggeon vertex function. 

The lowest order perturbation theory graphs evaluated 

to determine Z and cr/. 

The perturbation theory graphs needed to determine 

the renormalized coupling A (EN) and the function p. 

The crucial function p(y) computed from the graphs 

in Fig. 12 using a real coupling constant. 

The function p(g) when the bare triple Pomeron 

coupling is chosen to be pure imaginary. The zero 

at gi is proportional to (4-D) 
I/ 2 

~ 

A j Reggeon-two particle vertex used in the model 

for coupling particles into the Pomeron interactions. 

The n+m Reggeon contribution to the particle partial 

wave amplitude. The center is the renormalized 

(n, m) Reggeon Green’s function. 



Fig. 17 
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The leading behavior of TeP (s, t) and oT(s) comes 

from this contribution in the simple model discussed 

in the text. This yields a factorized contribution to 

oT(s) which behaves as (log s) 116 . 
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